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1. INTRODUCTION

The recent studies by Jordinson
t and Mack

2 
of the temporal eigenvalues

of the Blasius boundary layer have provided new insight into their properties

and raised a numbe r of questions about their role in init ial  value and other

problems . Mack found that for a given Reynolds numbe r and wave number

there  exists a fini te number of d i sc re te  eigenvalues;  as the Reynolds num-

ber is increased , additional eigenvalues spring from the continuous spectr um.

Mack discusses the propert ies  of the contin uous spectrum , which have also

been considered by Grosch and Saiwen (unpubli shed).  These studies show

tha t the eigenfunctions of the continuous spec t rum vary sinusoidally as y goes

to infini ty. Thus these funct ions are bounded but  a re  not zero in this limit.

Our purpose in this paper is to offe r an in te rp re ta t ion  of the continuo us

spectrum and an explanation of the properties of the discrete spectrum . We

shall also make a parallel study of the spa tial eigenvalues.

2. A MO DEL EQUATION

Conside r the d i f fe ren t ia l  equation

R 1(

~

4+4)  U(y )~~-~- + ~~~ (1)

with ~ = 0 when y = 0 , 4i —.- 0 as y — ~~~. Here R
2 is a ( cons t an t )  Reynolds

numbe r and U(y)  a give n velocity d is t r ibut ion  ta ken to be U = 0 when y < 1 ,

U = l w h e n y > 1 .

— 5—
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We are primarily concerned in this paper with the spectral prope r ties

-

• of the Orr-Sommerfeld  equation wi th a Blasius velocity profi le.  The model

equation , Eq. ( i ) ,  is in t roduced because its spectral properties a re  generall y

s imilar  to those of the Orr-Sommer feld  equation and as a resu l t  we are

bet ter  able to unders tand  the la t t e r .  A p ar t icu lar  advantage of the model

equat ion is that  the eigenvalue problem can be reduced to a simple transcen-

dental equation.  A potential problem with the model equation a r i ses  f rom the

use of a discontinuous U , a profile which might in t roduce  spurious modes

into the spectrum. Mack
2 
has found that the discrete  spec t rum of the Orr-

Sommerfeld equation change s si gnif icant ly when the velocity profiles are

changed from analytic to nonanal yt ic funct ions . As will be seen , howeve r ,

the model equation with the nonanalytic profile has asymptotic characte r and

spectra l  proper t ies  s imilar  to the Orr-Sommer feld  problem.

For temporal eigenvalues we wri te

.z ’(y) exp(iax - iac mt)  (2)

where a is real , C
m 

is the eigenvalue to be foun d and ~~~~ ~~ are  taken to be

cont inuous  at  y = 1. We shall show that a di s c r e t e  s pe c t r um ex i s t s  wi th

eigenfuri ct ions which are  zero at  i n f in i ty  as well as a cont inuous  spec t rum

with bounded e igenfun c t ions  at  in f in i ty .

Cons ider  f i r s t  the d i s c r e t e  e igenvalue  problem which may be reduced  to

‘I the solut ion of
I-.5

= - coth 01 (3 )

-6-
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where

• = a2 
- iacmR , 0~ = a

2 + iaR ( 1-c ) (4)

and Re0
2 

> 0. When R >> l i t  is easy to show that

c = (a~ + n 2 1r2 ) + 3/2 ( 1 + i )  + (5)

where n is an in teger .  Thus in the limi t R-m w there a re  an infinite numbe r of

d iscre te  eigenvalues.  It may be shown that there are  no d iscre te  eigenvalue s

for suff ic ient ly small value s of R and that Re c � 0 , Im c � 0. Denoting

the eigenvalue by cm t we now consider i ts  var iat ion wi th R , a s suming

i t  to be continuous . By analogy with Mackl s2 numerical  work , we expect the

discrete  eigenvalues to terminate in the continuous spe c trum and therefore

look for  a value R of R s uch that Re c is unity (as will be seen subse-n mn

q u.entl y ,  Re C
m 

I is in the continuous spect rum).  At this value of R we set

C
mn 

= I -
~~~~~~~~~~~~~

, 
~ = ( v - I ) a 2 , 01 = a - i b . 02 E + i ~~ (6)

n

where 
~~~, ~,s , a , b , E are all real and positive . The quant i ty  E is a r b i t r a r i ly

small and can be neg lecte d (we consider  points a r b i t r a r i l y close to the con-

tinuous spec t rum) .  Wi th fu r the r mani pulat ion , we obtain

b 2 ).L2 + a 2 , ab = aR /2 ( 7 )

It may readil y be shown that

b = a co sh (Z a) ,  a = -b cos(2b), s i n (Zb )  = -tanh(Za), ~ = a s i nh(2a ) ;  (8)

_ _ _ _ _ _ _ _ _
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again there are  an in f in i t e  number of solutions of which the smal les t  has

a = 0. 815 , b = 2 . 163 , aR = 3 .526 , c 1 - i (0 .  284a 2 
+ 1. 138)1 m 1

and , when n is a large inte ge r
3 2i a R1 r 1 flb ~ (n - —) i i, a ~ log t (n  - —) ir ]/ Z , aR = Zab , c ~ 1 -4 4 n mn log(ZaR n

Fur the r , i t  may be shown , and is in f ac t im plici t  in Eq. (8) ,  that  there  are

no so lut ions in which ~ is ei ther  negative or imag ina ry .  In Fig. 1 we disp lay

the var ia t ion of Re c and Im c for two of the princi pal eigenvalues.mn mn -

The in fe rence  is c lear .  When R takes an inf ini te  value there  is also an

i n f i n i t e  numbe r of d i sc re te  ei genvalues.  At finite value s of R there is only

a f i n i t e  numbe r , and for  each there  is a c r i t ica l  va lue R of R at  whichn

Re c reaches  uni ty ;  at  smal le r  value s of R this e igenvalue is no longe rmn

ph ysical l y meaningful . An anal ytic  cont inua tion of the solution of Eq. (3)

may be found when R < R , co r r e spond ing  to Re c > 1 , but  then Re e 2 < 0

and the re fo re  we have a problem in which it  is des i rable  to remove the expo-

nen t ia l l y decaying solut ion as y—w. It is n a t u r a l  to ask whe the r  there  a re

any  o the r  solut ions in which Re C
m 

> 1 and Re 0
~ 

< 0; the a n s w e r  appears  to

be no. Cer t a in l y if such solut ions  i n t e r s e c t  the con t inuous  s p e c t r u m , then

as Re C m~
_ l +  we have 02 = i~ wi th ~ < 0 , and we know that  no such solut ions

exis t.

,~~

-8-
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Rec m$ . Figure 1. Variat ion of Re c and Im Cm wi th R for the f i r s t  two
discrete  temporaV 1eigenvalues of the model equat ion
when a I. They branch off the continuous spec t rum
when R 3.53 and 12. 1, respectively. 
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If we admit solutions which remain bounded as y—~~ 
but do not neces-

sar i ly  tend to zero , the continuous spec t rum exists for  all R.  These solu-

- 

- 
tio ns are

= I - i~~N/ R , N > 1, e2 
= - ia - a2 ( N - 1 ) ,  0 = i a ( N ~~l) h / Z

m 1 2 
( 10)

= O 1sinh(e 1y ) ,  y < 1 ,

= O1
sinh O1

cos ~~(y~ 1)(N~~l ) 1
~
’2
]

+ O~ cosh O1
sin [~ (y~ 1)(N_1)h I

~
2
]/[a(N~~1) h/2 ], ~ > 1 ( 1 1 )

However , another interpreta tion can be placed on these solutions which is

more satisfactory from a physical standpoint. Suppose that at time t = 0

iax
= f(y )e  ( 1 2 )

where f(y )  is a given funct ion of y vanishing at y = 0 and in the l imit  as

How does ~ behave at la r ge values of t , whe re

= ~ (y, t)e~~ ” , ~-4- R~~~~~= (a 2 + iaUR )~~ ( 13

It then consists  of the sum of a set of e igenfunct ion s  satisf y ing null boundary

condi t ions  at y = 0 ,w and , if there  are any d i s c r et e ei ge nso l ut ions , i . e . ,  if

R > R 1, these mus t also be inc luded .  The coe f f i c i en t s  of s uch e i g e n f u n c t i o n s

may readil y be determined , for  example by Lap lace t r a n s f o r m  anal y sis , in

terms of f ( y ) .  In addit ion there  a re  always e igenfun c t ions  der ive d f rom the

f a c t  that , for  y > 1 , the governing e q u a t i o n  is of the hea t - conduc t ion  type .
-

4
~~~ •— -

I 

~~~~

- - - - .-—---~~ ~~~~—~~~~~~~ -.-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~-



Therefore , we may expect tha t a t  la r ge value s of t the solution of E q. ( 1 3 )  in

-H y > 1 will include an expression of the form

- 

= exp(-  a2t R ~~ - ia t )~~~~ t mF~~ (y R h / 2 t h / z ) ( 1 4 )

due to thi s cause.  Here Fm sat isf ies  Hermite ’s equa tion , e. g.,

F = exp(-y 2R / 4 t )  and Fm~~
O as y—.-~~ . At y = I this solution and its f i r s t

derivative wi th re spect  to y must  be cont inuous  with a solution of Eq. (13)  in

- 0 < y  < 1. Thi s solution may be expressed in the fo rm

= exp(-  a t R  - (15)

where f is a complex exponential  func t ion  sat isf ying f (0 )  = 0. By matching

Eqs. (14) and (15) ,  a c r o s s  y = 1 we es tab lish immedia tel y that  Fm ( O ) = 0 for

them conjointl y to de scr ibe  t! -~ e igenfunc t ion s  as t—.cx . This condit ion in

tu rn  implies that  m mus t  be a positive inte ge r and p = m + 1/2 .

Thus , we see that  a t  a f in i te  value of R the ei genfun c tiori s cons is t

4 mainly of an infinite set of func t ions  which decay exponentiall y in t ime , decay

exponential l y wi th y outside a region of th ickness  ( t / R ) h /
~
2 , and have a

• 

• 
boundary-layer s t ruc ture in 0 < y < 1. Insofa r as the e f fec t  on the ex terna l

-

~~~ 

region y > I is concerned , these a re  the most s i g n i f i c a n t  because the i r

t h i ckness  grows with t. The phase velocity of these solut ions is given by

‘:-

— 1 1 —

S——— — - -- ~~~~~~~~~ 
- -- -S—.- -- - —
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c = 1 - i a / R .  Now each of the f u n c t i o n s  F can be expressed  in the f o r m
m m

f  g~~ ( 0)exp 
{
~~i0Y - 82 tR 1j  d O

a nd so ma y be rega r de d as a sum of the e igenfanc t ion s  of the cont inuo us

spec t rum (F r i e d m a n 3 has made s uch an iden t if i ca t ion  for  Ihe con t inuous

sp e c t r u m  of the membrane  equa t ion) .  In addi t ion  to the parabol ic  e igen-

so l u t i o n - s  t he re  is , fo r  R > R 1, anothe r d i s c r e t e  set  of the f o rm  of E q. (2 )

in whic h 0 <  Re c < 1. As R i nc r ea se s , this se t  is augmente d at  d i s c r e t e
m

va lues of R by new eigensolut ions , which may be re ga r d e d  as spr in ging f r o m

the c o n t i n u o u s  spec t rum wheneve r Eq.  (3 )  is s at i s f i e d , so tha t  at  these  po in t s

Eq. ( 1 1 )  r educes  to

= O~ sinh 81 exp - i a (y - 1)  in ~ 
> 1 ( 1 7 )

3. TEMPORAL SPECTR UM OF THE BLASIUS
BOUNDAR Y LAYER

The Or r - S o m m e rf e l d  prob lem may be f o r m u l a t e d as fo l lows .  Cons ide r

the equa t ion  for  the small p e r t u r b a t i o n s  ~ of the s t re a m f u n c t i o n  for  a s t e a dy

shea r  flow d e f i n e d  by a ve loc i ty  U ( y )  in the x d i r e c t i o n .  D i s r e g a r d i n g  the

fa (- t tha t the s t ead y f low does not  s a t i s f y the N a v i e r — S t o k e s  e q u a t i o n s , we

have

+ U~~~- ( v 2
~~) - U ” ( y ) ~~-~ = R 1

V
4
~ ( 1 8 )

-12 -

~~~~~~~ ~~
-
~~—- - - -  - — -

~~~~~~~~~~~~
-- - - -

~~~~
— -

~~~ 
-
~~~~~

.- - -  -
~~~~

—- - - -  -
~~~~~~ •-- -~~~~ -~~~~—



F ~~~~~ 

-

~~~

- -

~~~ 

• ,w-—--- -
~~~—--——-• 

_ _ _ _ _ _ _ _  _________ _ _ _

• 2 .where R is the Reynolds number .  For the Blasius boundary  layer U(0)  = 0

and U(cx ) = 1. Fur the r , xx0R 1 measures  dis tance along the plate f rom the

center  of the d is turbance , itself a distance x0 f rom the leading edge of the

plate ; y x R t measures  dis tance normal to the plate ; t x R ~~ measures  time ;

and R 2 is based upon x .

The boundary  condit ions sa t i s f ied  by 4~ may be taken as

= = 0 at  y 0 and LIJ _..0 as y—~w ( 1 9 )

for all x and positive t. The a s sumptions leading to Eq. ( 18) a re  valid when

R >> 1 , but here we shall consider the prope r ties of the solu t ion o f E qs.  ( 18

and (19)  for all R.

The s tandard  me thod for  f inding the temporal eigenvalue s of ~ is to

wri te

r = e~~~~~
Ct

~~I ,(y )  (~~0)

wi th a being real , whereupo n ‘I’ sa t i s f i e s  the O r r- So m m e r f e l d  equa tion with

c as eigenvalue.  This  is a f o u r t h - o r d e r  equa t ion  and , as y— .w , has a r i che r

~~ 

asymptot ic  s t r u c t u r e  than our  model equa tion which is onl y second o r d e r .  In

addi t ion  to the term e 02Y [cf .  Eq. (4) ] ,  ‘~ can inc l ude a t e r m ~ e~~~
’. The

model equa t ion , if y > 1 , is ac t ua l ly the same as tha t  fo r  ‘I’ if y >> 1 , so i t  i s

not  s u r p r i s i n g  tha t  in spi te of i t s  r e l a t ive  simpl i c i t y , p r ac t i c a l l y all the

genera l  p rope r t i e s  of ~ and c have the i r  paral le l  in those of ~I’ and c as

~~~ 

m

- 13- 
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elucidated by Mack. 2 F i rs t  of all there is a continuous spec t rum given b y

c = 1 - j - (p
2 

+ a2 ), p real , ( 2 1)

for which ~~‘ is merely bounded as y— w .

This spec t rum may also be in te rp re te d in terms of the d i sc re te  spe c-

t rum of the heat  conduction equa tion. We wri te

= ~~~~~~~ 
- a2t /R  

~~(y, t )  ( 2 2 )

and set

= 1-m- 1/2 if y 1, (23 )

• 

where m , p are  real , p 0 and p > ~~~~~ Then ‘I’ sa t i s f i es

- a2-sye” + i a R U ” (y ) ~I’ = 0 (24)
0 0 0

and has a solution in which W0 (0) = ~“ i~0) = 0 and

— + B0y + C as y—.w . ( 2 5 )

• There is no numer ica l  evi dence that the cons tan t  B is ever ze ro. When

1/2y — t and t is la rge , we wri te

= ~~~~~~~~~~~~~~~~~~~ + F ( y R h / 2 t h / 2 )t fl~ ( 2 6 )

where q~~> q~~~1~ 
- a~~7d~ = 0 and F is defined in Eq. ( 1 4 ) .  A match

Si
14
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be tween Eqs. (25 )  and (26) is onl y possible if = A e ~~~
” , F (0)  0,

F ’(O) = R 112 B , and q = 0. Since F —.0 as y / t 1
~

’2.-~..cxs , it follows that  m is

an integer. Thus, as with the model equation there is a discrete spect rum

of the hea t -conduc tion type , each membe r of which may be in terpre te d as an

in tegra l  ove r the continuous spe c t rum.

The eigenfunct ions [E qs. (23) ,  (26) ]  shoul d , f rom a s t r i c t  mathemat ica l

point of view , be regarded  as the centra l  set of ei genfunctions . In addit ion ,

for  given a , there is a cr i t ical  value R of R be yond which a second , di sc r e te

set  springs f rom the continuous spectrum. Thi s behavior is s imilar  to tha t

of the model equa tion. The resul ts  of the two searches  per forme d by Mack 2

and the au thors  suggests  that at  the in te rsec t ion  points of the continuous and

discre te  spec t rum W, which oscil lates finitel y when y >> 1 , has a fo rm similar

to Eq. ( 17) ,  especially in r ega rd  to the sign of the a rgument  of the exponential.

No solut ions were found in which this si gn was positive . This sugges t s  that

there is no branching f rom the cont inuous spec t rum leading to eigenvalues in

which Re c > I.  The va lue of R~ was shown by Mack to be 15 when a = 0. 179

and we found it to be 25 when a = 0. 115. As R increases , more members  of

this second set appear and the total number tends to infinity with IL The

prope r ties of these eigenvalues appear , with one exception , to be cons i s t en t

wi th those of the model e q u a t i o n ;  i . e . ,  with Re c— .0+ , Im c— 0-  as R— w .  The

2 2exception is the inviscid ei genvalue , which Mack has labelled 3 when R -
~~ 10

as shown in Fi g. 3 of his paper.  For this one c tends to a f in i te  l imit .  These two type s

of l im i t i ng  behavior a re  cons is tent  with the two classes of asymptotic solut ions

p~

~

‘ -15-
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describe d by Lin.4 A fur the r special fea ture  of these eigenvalue s di st inguish-

ing them from Cm~ 
and of crucial importance , is that their real and imaginary

parts are  not necessar i ly monotonic; it  is possible for Im c > 0.

4. THE CONTINUOUS SPECTR UM OF SPATIAL
EIGEN VALUES

The spatial eigenvalue s , ob tai ned by requi r ing  R and ~ = ac to be real

qua n ti ties and looking for (possibly complex) value s of a which permit  non-

tr ivial  solutions of the Orr -Sommerfeld equation , are also of in te res t  and

have been studied by Gas te r and Jordinson 5 in connection with the evolution of

initial isolated dis turbances in the boundary layer.  The neutra l  curves1, on

which Im a = 0, are identical to the neutra l  curve s of the temporal eigenvalues ,

but we do not have such a detailed knowledge of the s t r u c t u r e  of a elsewhere *

in the complex plane as that provided by Mack 2 in the temporal case. We

can see f rom Eq. (4),  howeve r , tha t there is a continuo us spectrum of eigen-
2 2values which are  obtained by sett ing $~ = -p and r e q u i r i n g  p to be real .

The corresponding values of a are  defined by

a2 + iaR = - p2 + iwR ( 2 7 )

This spectrum may also be re in terpre ted in this instance in terms of the

spectrum of the d i f f rac t ion  equa tion. We wri te

- 
-
~ 

= e ’~~ X (x , y) (28)

- — 
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• and , when y — I , x >> 1, expand X in the form

w

X — e 1
~~~~~~x ( y)x n ( 2 9 )

2 . 1/2 . . -

where 2a 1 = -iR + i(R - 4i~ R )  X n is a funct ion of y onl y, s is a mono-

toni c increas ing  sequence of real numbers and X sat isf ies

R~~~(X ” - a~~X )  = i ( U - I ) a 1 (X ” - a~~X )  - ia 1
U’t X ,  (30 )

toge ther with the boundary condi tions X (0) = X ’ ( O )  = 0. We now forbid  X to

grow exponentially with y as y—.w , and then when y >> I

- a1y
x ~ D e + E y + F (31)

0 0 0 0

where D , E , F are constants  of which E can be e xpecte d to be non -zero .

When y,
°
x >> I we wri te

— 
—t i ax

X = ~~~ x~~(y ) x  n 
e + e

h / 2  RX G ( r O ) (32 )

n 0

where t~ is monotone increasing,~~~
h1 = a~~~~, r cos O = x, and r sin O = y.

The d i f f e ren t i a l  equa tion sat isf ied by G is

~
2G ~

2G / 2o o 1 o i R
+ — — + — — = — - i~ R G (33)

• - ~ r 2 r ~ r r 2 
~~~ \ 4 0

-
-
“
4.-
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and since G — 0 as r.— wn

[ / 2  \ 1/ 2
G = (L cos m0 + M sin m$)K t (~— - i~ R )  r (34)

o m m m {\ 4 /m

where K is a Bessel funct ion of the second kind. The matching of Eq. (2 9)
rn

as y-..w with Eq. (32) as y/x— .. 0 r equ i res  that

— 
-a1y

= D e , L = 0 , mM = E (35)

and S
n 

is an i n t e g e r .  ~~~ thi: stage m remains ind:terminate .

A parallel pair of expansions can be wri t ten if x is la rge  and negative

except that 2a 1 mus t be replaced by 2a 2 -iR - i (R 2 
- 4~~R ) ’~~

2 and resul ts

* - similar to Eq. (35)  are recovered.  (Recall that negative x r e f e r s  to stations

upstream of x and not of the leading e d g e . )  It may be expec ted  that the

expansions for  x >> 1 and x << - I when y >> 1 a re  analytic cont inuat ions  of

one another.  Since the expressions for in Eq. (32)  hold for  all 0 provided

r >> 1 , we would then infer  tha t sin mu = 0 also , in which case m is an i n t e g e r

and the resulting discrete spectrum may be inte r preted as an in tegrat ion over

the continuous spectrum define d by Eq. (27).

The model equa tion , Eq. ( 1) ,  also has a continuo us spec t rum of ei geri-

• value s , define d by Eq. (27) ,  which may be r e i n t e r p r e t e d  in te rms of the

spectrum of the d i f f rac t ion  equat ion.  Fur the r , i t  has a readi l y ident i f iable

family of d i s c r e t e  eigenvalues obtaine d by r e q u i r i n g  R and ac m = ~ to be real



_ _ _ _ _  _ _  

- 

~~~~TTT1TiIT~~T

and by solving Eq. (3 )  for  a subject to the condi tion Re 02 > 0. Denot ing  a

typical member of this family by aM. we may easily show that when R >> 1

= i~R + n 2 ir 2 + O(R 3”
~~) ( 36)

where n is an in teger .  The two solutions are presumabl y relevant  to the

reg ions ix >> 1 and correspond to wave s propagating upstream and down-

stream. When R is f ini te the value s of U M 
mus t be found numer ica l ly.  In

Figs. 2 and 3 we display the variations of a M with R for the f i r s t  two eigen-

values;  the wave velocity is positive in Fig. 2 and negati ve in Fig. 3. These

ei genvalues terminate as R decreases when Re 02 = 0; when the wave s propa-

gate downstream this occurs  at  R = 6. 82 and 14. 3 , respectively ,  for  the f i r s t

two of them. For negative wave velocity the terminal  value s of R a re

changed to 1.36 and 4. 17.

Thus it  follows that  the spectrum of Eq. ( 1)  cons i s t s  onl y of a con t inuous

family if R < 1.36 , which may be i n t e r p r e t e d  as a di sc re te  s p e c t r u m  us ing

diffraction theory. AtR = 1.36 a branching occur s and for R > 1 .36 there is

anothe r eigenvalue d iscre te  from this fami ly  in which Im aM < 0 . At R = 4 . 17

another eigenvalue branches off so that for R > 4. 17 there are tw o  d i s c r e t e

eigenvalues , each with Im < 0, and so on. We infe r that for gener~d

4 - R > 6. 82 the spect rum of aM consists of a cont inuous  f a m i l y d e f i n e d  h~

Eq. (27) toge the r with a f ini te  number of d i s c r e t e  value s , some i ~~~~~ Ii have

-

• 
Im aM ~ 

0 and some Im aM < 0. The numbe r in each set  is  r u u g h l ~’ III p~~r-

tional to R when R is large .

•19- 
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4

Figure 2. Variation of Re am and Im am with R corresponding to
wave s propaga ting downstream for the f i r s t  two dis-
cre te  spatial eigenvalue s of the model equat ion when
~~~= 1. They branch off the continuous spectrum when
R = 6. 82 and 14. 3, respectively. * -
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Fi gure  3. Variat ion of Re a m and Im a with R cor responding  to
wave s propagating upst ream’11or the f i r s t  two d i sc re te
spa tial eigenvalue s of the model equation when ~ = 1.
They branch  off the continuous spectrum when
R = 1.36 and 4. 17 , respect ively.
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5 THE DISCRETE SPATIAL SPECTR UM OF THE
BLASIUS BOUNDAR Y LAYER

6
There a re  at p r esent  no calculat ions of the d i sc re te  spatial spectrum

for the Blasius boundary laye r as extensive as those given by Mack2 for  the

d i sc rete  temporal spectrum. Thus , we have developed a numer ica l  method

(which is descr ibed in the Appendix) for computing the d i sc re te  spatial eigen-

values. Since Re a > 0 corresponds to d is turbances  traveling downs t ream

an d is of greate r physical interest  than those in which Re a < 0, the numer ica l

work has been primarily concerned with the fo rmer .  For Re a > 0 we have

obtaine d the variation with R of the two princi pal eigenvalues c o r r e s pon d i n g

to u~ = 0. 0397 , and the resul ts  are  depicted in Fig. 4. The f i r s t  eigenvalue

springs f rom the continuous spec t rum at R = 10. 5; the second at R = a65.

The behavior of the pr imary eigenvalue is q uite d i f fe ren t  f rom that of the

model equa tion (Fig. 2 ) ;  neither Re a nor Ima is monotonic and indeed Im a

changes sign for  451 < R < 3360. F I ~r t h e rm o r e , it appears that the p r i m a r y

eigenvalue is approaching a limit as R— w ;  we f ind this limit to be a 0. 14 +

0. 005i. The behavior of the f i r s t  di sc re te  spatial mode is similar to that

observed by Mack 2 for  the f i r s t  d i sc re te  temporal mode; the behavior for

R— w is in agreement  wi th Lin ’s
4 work.  The ph ysicall y most impor tan t  p r o -

perty  of Eq. (18)  is the possibili ty of ins tab i l i ty  ove r a f ini te  range of R and

is manifes ted  in the uni que behavior of the f i r s t  mo de . The second mode in

Fi g. 4 and presumabl y the h igher  modes have R e a  and Irn a mono tonic wi th

* R and a re  very  similar to the model (Fig. 2 ) .

-22-
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The spa tial Orr-Sommer feld problem has  a cont inuous spec t rum wi th

R e a  < 0 which describe s upst ream traveling waves.  We have not s tudied the

cor responding  d i sc re te  s pec t r u m  in as much detail for  this case , but have

found tha t for ~ = 0. 0397 a discrete  ei genvalue springs from the cont inuo us

I spectrum at R = 2. 1 with a = -0. 035 - 2. 2i. Thus , the d iscre te  eigenvalues

appear  at  a lower Reynolds  numbe r than they did for  the downs t ream propa-

gating waves. The upstream propagat ing waves are  of cour se  highl y damped.

- The quant i ty  Im -a for the one point given previously exceeds  by an o r d e r  of

magnitude the values shown in Fig. 4 . Equat ion  (27)  shows tha t  the con-

tinuo us s p e c t r u m  is also highl y damped; Im a = -R + 0 ( 1/R ) when R >> I and

p = O ( l ) .
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APPENDIX: DESCRIPTION OF THE NUM ERICAL SCHEME

To obtain the r e su l t s  presented he re in  i t  was n e c e s s a r y  to solve the

Orr -Sommerfeld  equat ion  numerical ly for se lected d i sc re t e  and cont inuous

e igenfunct ions  and ei genvalues. The numerical  method is s imilar  to one used

by Orszag 7 in that the dependent variable s are  r ep resen ted  by an appropr ia te

ser ies  of Chebyshev pol ynomials. Then the d i s c r e t e  e igenfunc t ions  and

eigenvalues may be found by applicat ion of the QR a lgor i thm due to Francis 8,

* 
- and the cont inuous solutions may be f ound by so lving a sy s tem of si m ul taneous

linear eq uations .

In the p resen t  problem the domain of y is s e m i - i n f i n i te; t he re fo re  a

convenient a rgumen t  for  the Cheb yshev pol ynomials is a negat ive  exponential

function ra ther  than the usual linear funct ion  of y. Thus , we have r e p r e se n t e d

a typical dependent variable in the fo rm

~~(y) ~~~~a .T  (e~~~~~ r )  ( 37 )

where T is the Chebyshev pol ynomial define d on the in te rva l  zero to one

and 
~r is a scale f a c t o r .  (The p roper t i e s  of Cheb yshev pol ynomia ls a r e given ,

for  example , b y Fox and Pa r ke r 9 .

The f i r s t  s tep in the n u m e r i c a l  p r o c e d u r e  is to solve the Blas ius  equa-

tion so i t  may be r ep re sen t ed  in the fo rm of Eq. (37) .  This is achieve d by

j i t e r a t i n g  the Wey l in tegra l  f o r m u l a t i o n  of the Blasius equat ion , as sugges ted

by Jones and Watson .t °  With a l i -t e r m  expansion (N = 16) and y = 4 .2 5  the
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sol ution for  U has a maximum e r r o r  of o rder  10 -i on th e i n t e r v al  0 ~ y ~

Since N is always greater than or equal to 16 for the results presented herein ,

any errors in the Blasius solutions are negligible .

The Orr-Sommerfeld equation is solved by formulating the temporal

ei genvalue proble m wi th the a ’s in Eq. (37)  as unknowns.  This r e su l t s  in

a l inea r  e igenvalue  problem and the QR a lg o r i t h m  is used to solve i t .  (The

method is similar to the one used by Orszag
7 to solve the Orr-Sommerfeld

equation for plane Poiseuille flow.

For given value s of a and R , the eigenvalue s of the Orr-Sommerfeld

equa tion consis t  of a cont inuous  s pe c t r u m  and a f in i t e  number  of d i s c r e t e

va lues .  The numer ica l  model has N-2  eigenvalue s , some of which a re  spur ious

and some of which approxi ma te the actual  spec t rum . We make two tes t s  for

the relevance of the so lu t ions .  F i r s t  the value of the e igenvalue should

a pp roac h a li mi t as N is i n c r e a s ed ; ‘~econd the se r ies  Eq. ( 3 7 )  d e s c r i b i n g  the

e igen func t ion  mus t be convergent  and a c cu r a t e  to orde r 10~~ or less. [That 
- I

is th e a ’s as j —.N must  be 0 ( l 0 ~~~). I About a t h i r d  of the e igenvalues  can be

excluded on the basis of the first test since they do not approach a limit.

Ove r half the ei genvalue s are very near the continuous spectrum and have

Re c = 1 - E wi th e vary ing between l0~~ and 10~~ in a typical case .  The

quantity Irn c does not approach a limit wi th N nor does the stream function

series Eq. (37) converge . We interpret these solutions as approximate

r e p r e s e n t a t i o n s  of the continuo us spectrum by the discrete numerical model

but recognize that this representation can never be accurate because the

IL 
• • ~~~~~~~~~
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function set is countable and decays exponentially while the continuous spec-

I t rum is s inusoida l  at i n f in i ty .  The remain ing  so lu t ions  r ep re sen t  the dis -

cre te eigensolut ions of the Orr  -Somme r feld equat ion.  In the Reynolds  number

* range in which ins tabi l i ty  occu r s , ra ther modes t  value s of N will resul t in

• three-figure accuracy for the primary discrete eigensolution; both larger

- • * 2 5
I 

and smaller values of R require an inc reased  N. For example , wi th R = 10

a = 0. 115 , N = 16 , and y = 4 . 2 5 , the maximum error in the stream function

- 
is 0(l0~~ ) compared to unity on the semi-infinite interval. To obtain the

curves of the first two spatial modes shown in Fig. 4 we have used values of

N up to 50; the value of 
~e 

has also been varied to minimize N. (The optimum

va lue of y varies  di rec t l y with some c h a r a c t e r i s t i c  th ickness  of the eigen-

solutions and therefore decreases with R.

Solutions to the temporal ei genva lu e prob lem are  easi ly o b t a i n e d :  R

and a real value of a are specified , and in some cases more than one mode

may be obtaine d from one calc ulation. The spatial eigenvalue problem is

more complicated: R is specified and we iterate the co mplex val ue of a

until ~ has a specified real value . This pr oced ure  works  we ll , conve rg in g in -

r two or three  i t e r a t i o n s .  Howeve r , the f i r s t  one or two po in t s  of the h i g h e r

modes are more difficult to obtain because there is no convenient sta r ting

point as there is with the first mode which has a and both real at the stability

boundary.

The representation of the ei genfunctions as polynomials in negati ve

‘
~ ~‘-:~ 

exponentials is well suited to func t ions  of the boundary- la ye r type . Howeve r ,

: as the d i s c r e t e  e igenso lu t ions  approach the in t e r sec t ion  point  with the
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cont inuous  spec t rum , the th ickness  i n c r e a s e s  and the n u m e r i c a l  scheme

described herein fails. In order to locate thesc points a numerical method

for generating solutions in the cont inuous  s p e c t r u m  is used .  Approx ima te

so lu t i ons of the Or r -Somme r feld equa tion in the con t inuous  s p e c t ru m  have

been obta ined  by Rog ler  and R e s h o t k o
1t 

; howeve r . t h e y  considered on l y  the

case  p a [ cf .  Eq. ( 2 1 ) ]  and they neg lec t ed th e i mag i n a r y  pa r t  o1 . . The

sol u tio n tec h ni que use d h e r e i n  is s imilar  to tha t  of Rogle r and R e s h o t k o ;

tha t  is , we su b t r a c t  the o s ci l l a t o r y  p a r t  of the so lu t ion  f r o m  the d e p en d e n t

v a r i a b le and the reb y obtain an inhomogeneous ve r s ion  of the O r r - S om m e r f e ld

equa tion.

® ( y )  ~l1(y) C sin PY - D cos j Y~i (3&)

[In some cases we found that  a c c u ra c y  was i n c r e a s e d  b y a lso s u b t r a c t i n g

E exp (-ay ) from ~ in E q. (38) .I The solut ion p r o c e d u r e  is as fol lows :

Subst i tu te  Eq. (38) into  the Or r  -Sommerfeld equat ion and the boundary con-

ditions and specify R , p, and a(or w). Then ~~(or a) is given by

J a
2 

+ p
2 

= iR(~~-a) 
(39)

and ® and the constants C and D are unknowns defined by a linear system of

equations (not an eigenvalue problem). We solve this sy stem us ing  a

Chebyshev expansion of the form Eq. (37), but that is not essential.

-28-
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The in te r sec t ion  points are those points a t  which - -

= I D I ;  a r g  D - arg  C = iii Z (40)

We loca te  these points  by genera t ing  the curve as a funct ion  of R and p upon

which the first condition of Eq. (40)  is sa t is f ied .  The point on the curve

where both of Eqs. (40) are satisfied is an intersection point.
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